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Abstract--Hydrodynamically developing and simultaneously (that is, hydrodynamically and thermally) 
developing laminar flows of a Bingham plastic in a circular pipe have been investigated numerically. 
Solutions have been obtained by using a four-step fractional method combined with an equal order bilinear 
finite element method. For hydrodynamically developing flow, shorter entrance length is required to reach 
fully developed velocity field and thicker unyielded region appears closer to the inlet as the yield stress 
becomes larger. For simultaneously developing flow, the heat transfer characteristics show the same trends 

as those predicted from the thermally developing flow. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

There are four types of  laminar duct flows, namely, 
fully developed, hydrodynamically developing, ther- 
mally developing and simultaneously (that is, hyd- 
rodynamically and thermally) developing flows [1-3]. 
In Part I of the present work [4], we studied thermally 
fully developed flow and thermally developing flow 
(the Graetz problem extended) of a Bingham plastic in 
a circular pipe using analytical methods. The classical 
Graetz problem generally provides fundamental ref- 
erences for thermal devices. However, in most indus- 
trial applications more complex fully elliptic gov- 
erning equations are involved than those of the 
idealized Graetz problem. 

Chen et al. [5] studied hydrodynamically developing 
flow of a Bingham plastic in a circular pipe using the 
boundary layer equations. However, as McDonald et 
al. [6] and Vradis et al. [7] pointed out, the boundary 
layer equations fail to predict the flow characteristics 
near the inlet, such as the adverse pressure gradients 
and the velocity overshoots, because these equations 
neglect the pressure variation in the radial direction 
of a pipe. Recently, Vradis et al. [7] reported numerical 
solutions for hydrodynamically developing and sim- 
ultaneously developing flow problems by employing 
the fully elliptic governing equations for a Bingham 
plastic in a circular pipe, but some errors are found in 
their approach, as will be illustrated later in the pre- 
sent study. 

The purpose of 1:he present study is to investigate 

hydrodynamically developing and simultaneously 
developing flows of a Bingham plastic in a circular 
pipe by a numerical method, which uses a four-step 
fractional method combined with an equal order bilin- 
ear finite element method [8]. Effects of the yield stress, 
the Prandtl, Reynolds and Brinkman numbers are 
presented and compared with previous studies. 

2. GOVERNING EQUATION 

The governing equations for unsteady, laminar, 
incompressible flow are : 

aUi 
- 0  (1) 

c~xi 

OUi ~ ~P ~3"r u 
P~7- +P-~x/UIUj= Oxi ~-O~ (2) 

pCp ~ + pCp 0 02 T 
~xj Tvs = k O~ + rl" ¢ (3) 

where (I) is the dissipation function 

(or, ov, ov, 
(I) = \Ox; + ~x~ ) ~xj " (4) 

Introducing the apparent viscosity in the case of a 
Bingham plastic to describe the non-Newtonian shear 
property in a manner analogous to the Newtonian 
viscosity, the tensorial form of the constitutive equa- 
tion is given by 
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NOMENCLATURE 

area of an element x + 
Brinkman number, goUZav/k(To - Tw) 
specific heat at constant pressure Y 
dimensionless radius of the plug flow y 
region, or ratio of the yield shear stress z 
to the wall shear stress, zylzw 
pipe diameter 
heat transfer coefficient based on 
bulk temperature 
thermal conductivity 
exponential growth parameter 
total number of nodes 
local Nusselt number, hD/k tle~ 
pressure 
Peclet number, 2 UavR/C~ or 2 Re Pr 
Prandtl number, go/(p~) 
dimensionless pressure 
pipe radius 
Reynolds number, pU,~R/go go 
dimensionless radial coordinate, y/R p 
surface of an element ~, z~j 
temperature zw 
entrance temperature '~y 
bulk temperature 
wall temperature q~(r) 
time and time increment 
axial velocity q~ 
average axial velocity 
intermediate velocities 
dimensionless axial velocity, U/Ua~ 
radial velocity 
dimensionless radial velocity, V/Ua~ 
weighting function 
dimensionless axial coordinate, z/R 

dimensionless axial coordinate, 
(ztR)lPe 
yield number, zyR/goUav 
radial coordinate 
axial coordinate. 

Greek symbols 
c~ thermal diffusivity 
~, ?ij rate of strain, Uu+ Uj,, 
~*, ~* dimensionless rate of strain, uu+ uj.i 
r/ apparent viscosity for a Bingham 

model 
dimensionless apparent viscosity, 

~lgo 
O(r, x) dimensionless temperature, 

(Tw-- T) / (Tw-  Te) 
®re(x) dimensionless bulk temperature, 

(Tw- 7"m)/(Tw- To) 
plastic viscosity 
density 
shear stress 
wall shear stress 
yield shear stress 
viscous dissipation function 
dimensionless temperature, 
( T  w - -  Z ) / ( Z  w - -  Tm)  

normalized variable. 

Superscript 
n time level. 

Subscript 
e entrance 
w wall. 

where 7u = Uu+ Uzlis the rate of strain, t/is the appar- 
ent viscosity [9-12] such that 

t /=  ~/½(~ : ~) (6) 

"(~ (['Cl < "Cy) 

ry is the yield shear stress and go is the plastic viscosity. 
The drawback of the above viscosity function model 

is that the viscosity is discontinuous at the yield stress 
and one must impose a large value in place of the 
infinity, which may cause a numerical instability in 
the low shear rate region. Furthermore, this model 
cannot describe the behavior of a Bingham plastic 
properly in the low shear region and the unyielded 
region because it includes only two parameters. 
Recently, Ellwood et al. [13] and Abdali et al. [14] 
who, respectively, studied the laminar jet flow and 
entry and exit flows of Bingham fluids, reported that 
this problem can be circumvented by using the fol- 

lowing constitutive equation proposed by Papan- 
astasiou [15] 

+ vY (1 - exp(--m~f¼(~ : ~)) (7) 

where m is the exponential growth parameter. In par- 
ticular, Abdali et al. [14] demonstrated that equation 
(7) adequately approximates an ideal Bingham plastic 
fluid. In fact, from the computational point of view, 
equation (7) is simple to implement and gives a good 
approximation in the limit of low shear rate. There- 
fore, in the present study, we are to use equation (7) 
with m = 1000. 

The non-dimensionalized governing equations for 
axisymmetric flow in cylindrical coordinates are 

au v ~v 
0x + ~ + Tr = 0 (8) 
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Ou Ou du @ 1 (_ ( 2tOu~ i+U~x+V + \ o x \  Ox) Ot Or Ox Ree thff" 

1 0 ( (Ou+Ov~ (9a) 
+ 7~r ~o~. ~ ox))) 

OV+U~x+V~rr= Op 1 ( 6 (  (0U+ 0V~ 
Ot dr F-Ree ~x #hff" ~r Oxj,] 

1[  v \  1 O [ Ov\\  
-rt t , ,oe~'2r)+7~rrtthrr '2~r))  (9b) 

O0 O0 O0 
~7 +u~7 +v W 

= 2(OzO 1 O ( r O 0 ~  

2Br l 
+ ~ e  r/~rr(2(~* : ~*)) (10) 

Y 
t/at = 1 + ~ ~  (1 -- exp(--mx/l(9* : 9*))) (11) 

2((eq'+?V+(oqh+(a. oq= 
½(9":9") = \ta~:j \rj \OrJ } g + Ox} 

(12) 
where t/e n = t//#0 is the non-dimensionalized apparent 
viscosity and Y=: zyR/#oU~, is the yield number. 
Vradis et al. [7] neglected the term - (l/r) • %r" 2(v/r) 
on the right-hand side of  equation (9b) without any 
explanations and possibly by mistake. Furthermore, 
their definition of Reynolds number is somewhat un- 
clear. Effects of neglecting the term - (l/r) • t/~- 2(v/r) 
will be discussed in Section 4. 

The calculation domain and boundary conditions 
are shown in Fig. 1. It is assumed that the velocity 
and temperature are uniform at the inlet and are fully 
developed at the outlet. No-slip and constant tem- 
perature condition,; are applied at the wall. Vradis et 
al. [7] assumed OO/Ox = 0 for thermally fully 
developed flow condition. However, in order to satisfy 
this condition at t]ae outlet, the calculation domain 
must be stretched unnecessarily long. Thus, we prefer 
to impose O ( O / O m ) / O X  = 0 rather than O0tOx = 0 at 
the outlet. 

For hydrodynamically developing flow problem, we 
consider only equations (8) and (9) subject to necess- 
ary boundary conditions, while for simultaneously 
developing flow problem, we consider the entire sys- 
tem of equations and boundary conditions. 

3. NUMERICAL METHOD 

The governing equations (8)-(10) are integrated in 
time using a fully implicit four-step fractional method 
[16]: 

Og- u7 1 d . .  
At +~Uxj (UgU~+UTUT) 

Tn+ 1 _ T n 

10P" 1 O . 
p Ox, l- 2p0xj(40+%)---- (13) 

u*-Oi i ot,. 
A ~  -- p Oxg (14) 

62 p t~U* 
_ _ p . + l  (15) 
Ox~ At Oxi 

UT+ 1 _ U* 1 OP "+ 1 
- -  ( 1 6 )  At p Oxi 

1 0 n+ 1U7+  1 
+ ~ x j  (T - +  T~UT) At 

_ !  ° 2  .+, (,vor 
- 2~0x~ (T + T " ) + - - p C p  (17) 

where At is the time increment, 0g and U* are inter- 
mediate velocities and superscript n denotes the time 
level. The convection and diffusion terms are inte- 
grated using the Crank-Nicolson method (second- 
order accuracy). 

The fact that the pressure is decoupled from the 
velocity in the fractional step method was utilized 
successfully in the finite element analysis of the incom- 
pressible Navier-Stokes equations by several 
researchers [17-21]. In the fractional step method, the 
coefficient of the pressure equation is fixed and the 
inverse matrix of the pressure equation does not need 
to be calculated at every iteration like the SIMPLE 
procedure [8]. The boundary condition of 0i is given 

r Wall u = v = t g = 0  

Inlet 

U = 1  

0 = 1  ~ 

X 

Centerline 

Ou O 0  

c~r Or 

- - ~ _  Outlet 
c90 = ~ dO n 

- v~-_~ cgxt3u O,,Ov dx  

Ib" OX ~X = 0 

Fig. 1. Computational domain and boundary conditions. 
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as U7 ÷ l within the second-order accuracy [16], as can 
be derived from equations (14) and (16) : 

0, = U7 +' +At a(P"+' _en)  : U7  +l + O ( A / 2 )  . 
Oxi 

(18) 

The momentum and pressure equations are dis- 
cretized using a Galerkin method and the energy equa- 
tion using a consistent streamline upwind Petrov- 
Galerkin method [22]. In obtaining the linear 
algebraic equation from the nonlinear momentum 
equations, the successive approximation method [23] 
is used. The discretized momentum and energy equa- 
tions are solved by using a line-by-line TDMA, with 
the pressure equation solved by using a line SOR 
(successive over-relaxation). 

From the continuity constraint, we obtain a Poisson 
type pressure equation. Since we use an equal order 
velocity pressure formulation, the weighting function 
of the continuity equation must be of the same order 
as that of the momentum equation. Then, applying 
the method of weighted residuals, the continuity equa- 
tion is expressed as follows : 

fA wV'Un+J dAe = 0. (19) 
e 

By the vector identity (V'CUw) = Vw" U'+I +wV • 
U "÷1) and the divergence theorem, equation (19) is 
rewritten as follows : 

IA Vw'U"+l dAe= f (wU"+~'n)dSo. (20) 
e J S ~  

Then, substituting equation (16) into equation (20), 
the following Poisson type pressure equation is 
obtained. 

At (" [8w 8P"+1\ 

= fA:(~xjU')dAe-fs( WUn+l'g) dSe" (21) 

A typical weak formulation of the pressure equation 
used by other investigators [18, 21] is written by con- 
sidering equation (15): 

o ~Xj 

p (' /'6~U. \ [" g3pn+l 
- A-,| w%v-  dS° 

JA~\ Y / dSo 
(22) 

From numerical experiment, we note that equation 
(21) is preferable to equation (22) in treating outlet 
boundary conditions. 

4. R E S U L T S  A N D  D I S C U S S I O N  

For hydrodynamically developing flow problem, an 
81 × 21 non-uniform mesh is used, where the axial 
length is 8 times the pipe radius. For  the sim- 
ultaneously developing flow problem, a 121 × 21 non- 
uniform mesh is used, where the axial length is 50 
times the pipe radius. The steady state solution is 
obtained when the following condition is satisfied 

n n - - I  emax = max I~P~-~oi [ < 10 9 (23) 
i = I , N  t 

where ~0 denotes the normalized variables, the sub- 
script i denotes the specific node point, the superscript 
n denotes the time level and Nt denotes the total num- 
ber of nodes. 

e max 

10 ° 

10 -2 

10  -4 

10 .6 

10 -8 

I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' j 

J 
Y = O  (c=O) 

/ Y = 0 . 4 6  ( C = 0 . 1 )  

/ / v= .o9(c=o.a) :: 
/ Y = 1 . 9 9  ( c = 0 . 3 )  - 

=3.37 1c=0.4) 
2 

, I ~ \ ~  ~ I ~ "~ ~ I , , ~ I ~ ~ 
0 2 0 0 0  4 0 0 0  6 0 0 0  8 0 0 0  1 0 0 0 0  

N u m b e r  o f  t ime  s teps 
Fig. 2. Convergence history for various yield numbers. 



Laminar convective heat transfer of a Bingham plastic--II 3693 

4.1. Hydrodynamically developing flow 
Figure 2 shows the convergence histories for Y = 0, 

0.46, 1.09, 1.99, 3.37 and 5.65 and for Re = 25. It 
shows that more time steps are required to reach the 
steady state for larger Y. Figure 3 shows the velocity 
profiles at the outlet of a pipe, where hyd- 
rodynamically fully developed flow is assumed. It is 
noted that good agreements are achieved between the 
previous analytical [9] and the present numerical solu- 
tions. Also note that there is a uniform velocity region 
near the centerline, namely 'plug flow' or 'core' region, 
when Y is non-zero. The plug flow region becomes 
wider with the increase of Y. The yield number Y can 
be written in terms of the core radius c as follows [5] : 

12c 
Y - - -  (24) 

3 _ 4 e + e  4 • 

The radial variations of the axial velocity at four 
axial locations are shown in Fig. 4. Near the inlet, 
the velocity profile has a local minimum at the pipe 
centerline and a local maximum near the wall. Such 
velocity overshoots were first reported for Newtonian 
fluids by Wang and Longwell [24] and further ex- 
plained in Shah and London [1]. Note that the 
velocity overshoot is attenuated by the increase of Y. 

Figure 5 shows the variation of the axial velocity 
along the centerline, together with other researchers' 
results. In the numerical analysis, the velocity profile 
must linearly fall from a constant value to zero within 
the nearest element to the wall at the inlet to satisfy the 
no-slip condition. ]'his causes the centerline velocity at 
the inlet to be slightly larger than the inlet bulk 
velocity. It is shown that, as the yield number 
increases, the velocity develops faster, resulting in 
shorter entrance length. When Y-- 0 (laminar New- 
tonian fluid flow), the present result shows good agree- 
ment with that of Benim and Zinser [25]. Also, it is 

revealed that the boundary layer approximation used 
in Chen et al. [5] is not accurate in predicting the flow 
in the inlet region. Note that the results of  Vradis et 
al. [7] are very different from those of the present 
study and Benim and Zinser [25], which is believed to 
be the consequence of neglecting a term in the gov- 
erning equations (see also Sections 1 and 2). 

The contours of effective viscosity for different 
values of Y are shown in Fig. 6, where the dotted lines 
indicate the unyielded regions, or plug flow regions. 
It is interesting to note that for large values of Y, the 
apparent viscosity along the centerline rapidly 
increases near x = 1, while the apparent viscosity 
along the wall increases monotonically and relatively 
slowly. From equations (11) and (12), it is noted that 
the viscosity along the centerline is affected only by 
8u/~?x because Ou/Or = v = Ov/Ox = 0 there. An abrupt 
increase of the apparent viscosity along the centerline 
is due to the fact that the velocity becomes fully 
developed near x -- 1, so that 3u/Sx ~ O, making the 
denominator of the second term on the right-hand 
side of the equation (and hence, that of equation (l 1)) 
become zero. 

Figure 7 shows isobars for different values of Y. It 
is noteworthy that adverse pressure gradients appear 
near x = 1, when Y > 4. This phenomenon is explai- 
ned as follows : along the centerline, the x-momentum 
equation (9a) becomes, 

8p 2 (8~ff 8u ~2u'X gu 
~x = Ree(-~x-x ~x + thff-~x2 ) - U ~ x  (25) 

where Dhe/Ox is very large near x = 1 for large values 
of Y (Fig. 6) so that 8p/Ox > 0. However, the yielded 
regions naturally coincide with favorable pressure 
gradient regions and the occurrence of an adverse 
pressure gradient can be considered as an indication 
of the start of the plug flow region. 
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Fig. 4. Radial variations of the axial velocity at four axial locations. 
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Fig. 6. Contours  of  effective viscosity for different values of  Y, where the dotted lines indicate the unyielded 
regions around the centerline : (a) Y = 0 ; (b) Y = 0.46 ; (c) Y = 1.09 ; (d) Y = 1.99 ; (e) Y = 3.37 ; (f) 

Y = 5.65. 
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Fig. 8. Fully developed temperature profiles. 

4.2. Simultaneously developing f low 
Figure 8 shows t]ae temperature profiles at the outlet 

of the computational domain where simultaneously 
(hydrodynamically and thermally) fully developed 
flow is assumed. "['he numerical solutions of the pre- 
sent study agree well with the fully developed tem- 
perature profiles obtained from an analytical study 
[4]. It shows both the validity of the present numerical 
method and that of the thermally fully developed flow 
assumption. 

Figure 9 shows the local Nusselt number Nu for 
Y = 1.99 and Re = 5, 25, 50. In the present study, the 
local Nusselt number Nu is defined as 

2_ 00 I 
Nu = ®m Or I,= 1 (26) 

Theoretically, the local Nusselt number at the inlet of 
a pipe is infinite because the temperature gradient at 
the wall is infinite. For  the same Prandtl number, 
the velocity and temperature fields develop faster for 
lower Re. Hence, higher Nu is expected for higher Re 
in the entrance region. In Fig. 9(a), the local Nusselt 
number is shown to be higher for higher Re. However, 
these results seem to be different from those of the 
previous study [4] which predicted higher Nu for lower 
Pe (=  2 Re Pr). Note that the axial coordinate in Fig. 
9(a) is not x ÷, but x. If  the curves in Fig. 9(a) are 
represented with the Graetz type axial coordinate x +, 
those curves show the same trend as those predicted 
in the previous study [4] (Fig. 9(b)). 

Figure 10 shows the local Nusselt number for 
Y = 1.99 and Pr =: 1, 2, 5, 10 together with an ana- 
lytical solution obtained for Pe ~ ov [26]. In the case 
of Newtonian fluid flow, it is known that for a Prandtl 
number larger th~.n 5, the fully developed velocity 
assumption (the (3raetz problem idealization) intro- 
duces little error because the velocity profile develops 

so much faster than the temperature profile [3]. Figure 
10 also shows that one can assume that the velocity 
field is fully developed when Pr > 10 for a Bingham 
plastic. Note that there exists a substantial difference 
between the present result and the result from Vradis 
et al. [7]. 

Figure 11 shows the local Nusselt number along the 
axial distance for Y = 0, 1.99, 5.65 when Re = 25, 
Pr = 1 and Br = 0. As is in the previous study [4], the 
Nusselt number of a Bingham plastic is not sig- 
nificantly affected by the yield stress when viscous 
dissipation is excluded. 

Figures 12(a) and (b) shows the bulk temperature 
and local Nusselt number with respect to axial 
distance, respectively. The numerical results show the 
same trend as the analytical results of Ref. [4] where 
the velocity is assumed to be fully developed. In par- 
ticular, it is noted that unlike the case for Br = 0, the 
Nusselt number is significantly changed by the yield 
stress with the inclusion of viscous dissipation. 

5. CONCLUSION 

Hydrodynamically developing and simultaneously 
developing flow problems for a Bingham plastic in 
laminar pipe flow are investigated by a numerical 
method, which uses a four-step fractional method 
combined with an equal order bilinear finite element 
method. For  numerical stability reasons, a recently 
proposed viscosity model by Papanastasiou [15] is 
adopted because the viscosity function of the classical 
Bingham plastic model is discontinuous at the low 
shear rate region. 

Results for various values of the yield stress, the 
Prandtl, Reynolds and Brinkman numbers are illus- 
trated. The validity of the present numerical method 
has been verified by comparing the data for some 
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Fig. 12. (a) Bulk temperature with respect to axial distance ; (b) local Nusselt number with respect to axial 

distance. 

selected cases, wherever previous results are available. 
For  hydrodynamically developing flow, it is shown 
that shorter entrance length is required to reach fully 
developed velocity field for larger yield stress. The 
unyielded region around the centerline becomes 
thicker and approaches the inlet as the yield stress 
becomes larger. For  simultaneously developing flow, 
the heat transfer characteristics show the same trends 
as those predicted from the analytical method for the 
Graetz problem. 
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